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A THEORY OF TURBULENCE IN A HOMOGENEOUS FLUID
INDUCED BY AN OS CILLATING GRID

By
Robert R. Long
The Johns Hopkins University, Baltimore, Maryland 21218

Several investigators have run experiments to study turbulence in a con-
tainer of homogeneo us fluid caused by a grid extending horizontally across the box
and oscillating vertically. The more recent experiments indicate that the root-mean-
square horizontal velocity o, is proportional to the oscillation frequency f and is
inversely p roportional to distance from the grid, and that the integral length scale £
is proportional to this distance and indep endent of f. A theoretical model is based
on the Navier-Stokes equations and the no-slip boundary condition but contains no
other assumptions. The statistically steady behavior is as observed in the experi-
ment. In the unsteady case, the front separating turbulent and non-turbulent fluid
propagates at a speed inversely proportional to the square root of time.

The problem has importance with respect to the mixed layer in the upper
ocean or the lower atmosphere. The present model does not consider buoyancy
effects but if a passive contaminant is present the mean concentration is governed
by the one-dimensional diffusion equation with constant turbulent coefficient of

diffusion.

Bouvard and Dumas (1967) constructed an experiment with configuration
represented in figure 1. A grid is oscillated vertically with stroke S and fre-
quency f in a container of homogeneous fluid. The motion induced is turbulent

and interest is attached to the root-mean-square horizontal velocity o, and




the integral length scale £ as functions of distance from the grid (or of distance z

from some virtual energy source), the frequency f, the stroke S and the lengths

M;, M;,... characteristic of the grid geometry and position. The problem was

also investigated experimentally by Thompson and Turner (1975) and very recently

by Hopfinger and Toly (1976). Thompson and Turner's data suggest that o, £ is

independent of distance from the grid and that 0, is proportional to the frequency

of oscillation of the grid f at any given level. These two behaviors were also

found by Hopfinger and Toly. They also measured £ and found £ < Z, 80 that

o, <z,

To obtain an understanding of this experiment, we solve the problem of

statistically steady, finite motions in a Newtonian fluid filling infinite space
induced by a steady disturbance source on the plane z = 0 whose properties are 1
independent of x and y. The properties of the motion should be the same as those
in the experiment if the frequency of oscillation of the grid is large and the stroke

' and its geometrical lengths are small. A complete comparison, however, requires

relations between some parameter or parameters characterizing the theoretical

e

source and f, S, v, M; , M,,... .

We begin by considering a thin ""source' layer -d <z <d. The layer

iy

= may contain a grid or some other arrangement conveniently constructed in the

~ laboratory or in the mind. I'itegrating the averaged energy equation from d to z,

: ., we get

4 8

] 3

94 0=-F°+E°-D 1)
- (

“

where F* and E® are the energy fluxes w(p/p+ qa /2) averaged over the planes at

distances z and d respectively from the plane z = 0, and D* is the total energy

dissipation,
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Da=-vj (uv ut v v + WP w)dz (2)
d

In the expressions above, u,v,w are the velocities in the x,y, z directions, p is
pressure, p is the uniform density and q is the fluid speed.

If d is finite and non—zero, E° is finite and non-zero if we require that
the velocities at all z be finite and non-zero. Then, for example, o, will vary
in some complicated way with Ea, d, z, v and other quantities that depend on the
nature of the energy source. Evidently we may improve the situation by letting
d - 0. Let us assume, tentatively, that we have the freedom to construct an
energy source that produces disturbances near z = d with the following properties:

(a) The only length scale is d, i.e. derivatives with respect to

X,y,z vary as d~* when operating on any non-constant quantity.

(b) The velocity varies as d”", where n is a universal constant.

(c) The vorticity ¢ is proportional to the velocity scale divided

‘ by the length scale, i.e., d™™.

(d) The average energy flux on the plane z = d is of order d ~*".

-8

We will see later that we have this freedom.

Since F° is finite and non-zero, D° cannot be zero as d = 0. If D? is

L}

§ finite and non-zero, E° is finite and non-zero. But E°/d is proportional to the
4 dissipation function ¢ just outside the source layer. Using properties (a)-(d),
: g we get

f ¥ € Cac:d"a‘"ae:d’l
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This means that the velocities at z = d tend to zero so that E° is zero. The

contradiction reveals that E° and D® are both large and since F® is finite E° ~D°.
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Again, E°/d is proportional to the dissipation function just outside the source

layer so that

d—3 n-1 o d-an-a

orn =1. Thus E® tends to infinity but E°d® tends to a finite quantity, which we
call K3. The constant K and the viscosity v are the only two parameters of the

problems. Dimensional analysis yields, for example

= oA, -f =A, (3)

where A, and A, are functions of the Reynolds number K/v. As K/v =, they
become universal constants.
We now demonstrate that a flow near z = d may be chosen with the four

properties listed above. “We put doublets of strength xd® (finite » ) at all points
(nd, md, 0) where n and m are all of the positive and negative integers. Doublets
with axes in the direction of x positive and x negative correspond to n+ m even and
n+m odd, respectively. We also impose a rigid plane at z = 0 with infinitesimal
holes for the doublets. The no-slip condition insures that there will be vorticity.
The length scale of the motion near z = d is d times a function of /v and so has
the property (a). The velocity scale near z =d is »/d and so has the property (b).
There is vorticity and the scale is proportional to d~? so has the property (c).

. - Finally, an irrotational fluid in steady state has a uniform value of p/p + q°/2 and

| 35 it is then clear that the correltion in the mean energy flux term is zero. In the
present problem there is loss of energy because there is vorticity and viscosity so
that on the average (p/p + q° /2) will be less for incoming fluid than for outgoing

fluid at the plane z = d. The difference is x°/d° times a function of »/v and the
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mean flux on z =d is of order »°/d®, satisfying property (d).

The variation of o, and £ with z in (3) agrees well with experiment.
Equation (3) also reveals that o, is proportional to K. If we now neglect the
effect of viscosity, the frequency f is the only experimental parameter involving
time so that o, should be proportional to f as observed. Notice, however, that
a relationship between K and f is analogous to the drag coefficient in shearing
flow and the latter is known to involve the Reynolds number, although weakly,
when the Reynolds number is large (Monin & Yaglom, 1971). Therefore, o, /f
may, on close inspection, vary slowly with f.

The experiments and theory relate to the important problem of the
mixed layer in the upper ocean and the lower atmosphere, where, however,
buoyancy is important dyna nically. The mean buoyancy E, or more generally,

the concentration of any contaminant is subject to the equation

b _ db |
3t - 5z\Kp3z/ @
where KD is the eddy diffusivity. If the buoyancy variation is weak or, more

generally, if the contaminant is dynamically unimportant, K . is proportional to

D
the constant eddy viscosity and (4) may be solved for b subject to initial and
boundary conditions.

Finally, consider the initial value problem when the energy source 'egins

N att = 0 in an infinite fluid at rest. A front separating turbulent and non-turbulent

fluid will move away at a speed u, = o (K,v,t). Therefore,

3

where A, is a function of K/v .
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Figure 1. Schematic diagram of the experimental apparatus.
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